首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1357篇
  免费   360篇
  国内免费   223篇
航空   1516篇
航天技术   95篇
综合类   158篇
航天   171篇
  2024年   3篇
  2023年   22篇
  2022年   42篇
  2021年   63篇
  2020年   89篇
  2019年   69篇
  2018年   81篇
  2017年   100篇
  2016年   83篇
  2015年   96篇
  2014年   116篇
  2013年   103篇
  2012年   112篇
  2011年   121篇
  2010年   95篇
  2009年   108篇
  2008年   90篇
  2007年   98篇
  2006年   83篇
  2005年   59篇
  2004年   52篇
  2003年   39篇
  2002年   48篇
  2001年   26篇
  2000年   25篇
  1999年   18篇
  1998年   19篇
  1997年   10篇
  1996年   8篇
  1995年   9篇
  1994年   11篇
  1993年   6篇
  1992年   14篇
  1991年   3篇
  1990年   5篇
  1989年   6篇
  1988年   8篇
排序方式: 共有1940条查询结果,搜索用时 31 毫秒
1.
《中国航空学报》2020,33(3):749-770
Angle of Attack (AOA) is a crucial parameter which directly affects the aerodynamic forces of an aircraft. The measurement of AOA is required to ensure a safe flight within its designed flight envelop. This paper intends to summarise a comprehensive survey on the measurement techniques and estimation methods for AOA, specifically in Unmanned Aerial Vehicle (UAV) applications. In the case of UAVs, weight constraint plays a major role as far as sensor suites are concerned. This results in selecting a suitable estimation method to extract AOA using the available data from the autopilot. The most feasible and widely employed AOA measurement technique is by using the Multi-Hole Probes (MHPs). The MHP measures the AOA regarding the pressure variations between the ports. Due to the importance of MHP in AOA measurement, the calibration methods for the MHP are also included in this paper. This paper discusses the AOA measurement using virtual AOA sensors, their importance and the operation.  相似文献   
2.
叶片式预旋喷嘴具有尺寸小,落后角大的特点。为了详细研究小尺寸预旋喷嘴的预旋性能,采用五孔探针对叶片式预旋喷嘴的出口流场进行了实验研究。测量了Ma=0.2,0.3时喷嘴出口的压力分布、速度分布和出口气流角度分布,实验获得了喷嘴的落后角和预旋效率,并进行了与实验工况相同的数值计算。通过实验获得的总压云图以及速度云图,可以发现叶片式预旋喷嘴的端壁二次流损失、尾迹损失严重,有明显的边界层分离现象。Ma=0.2时,喷嘴Re数为5.76×104,落后角2.84°,实验测得的预旋效率为0.73;Ma=0.3时,喷嘴Re数为1.06×105,预旋效率提高至0.77。实验模型端壁的影响使预旋效率实验结果偏低6.5%左右。数值结果与实验测得各参数符合较好:数值结果与测得的喷嘴出口截面平均总压、静压偏差在1%以内;出气速度、周向速度以及出气角度与实验结果偏差在4%以内。数值计算表明,叶片式预旋喷嘴的预旋效率基本不受压比影响,随Re数增大先增大后基本不变,最后基本稳定在0.85。  相似文献   
3.
为实现三维内转进气道的内收缩流场与圆锥前体的外压缩流场的良好匹配,提出了一种双模块下颌式内转进气道/圆锥前体(Double-modules Chin Inward-turning Inlet and Conical Forebody,DCII/CF)一体化设计方法,获得一种新颖的双发并置、侧向安装的DCII/CF一体化布局。针对该布局形式,开展了DCII/CF一体化构型与传统的单模块内转进气道/圆锥前体(Single-module Inward-turning Inlet and Conical Forebody,SII/CF)一体化构型的数值对比研究。结果表明:DCII/CF一体化布局不仅为内转进气道提供了优秀的前体附面层排移效果,还有效避免了传统SII/CF布局中前体附面层与进气道内部流场之间的相互干扰。在Ma∞=6.0设计状态,DCII/CF一体化布局的进气道总压恢复系数相较传统的SII/CF布局有了显著提高,从0.403提高至0.482;但由于前体附面层的排移,该布局的捕获流量略有降低, SII/CF的流量系数为0.956,该布局则为0.917。而在非设计状态,该布局形式同样具备较好的总压恢复性能,在Ma∞=5.0与Ma∞=4.0的总压恢复系数分别达到了0.586和0.682,明显高于SII/CF的总压恢复系数0.507和0.619。  相似文献   
4.
进气道喘振诱发因素及其可靠性分析   总被引:1,自引:0,他引:1  
针对飞机进气道的典型故障-喘振的诱发因素进行全方位的分析论证,并为从事航空工程的人员提供一种对动力装置整体性能进行可靠性评估方案,篇末对世界上比较先进的进气道气动设计思想及其喘振机理进行分析,可以为飞机设计师在设计飞机过程中具体分析问题提供一定的参考。  相似文献   
5.
对污水处理装置的技术参数、技术要求及设计方案的选择、工作原理做了进一步的阐述。对工业循环冷却水的处理有实际指导意义。  相似文献   
6.
分析了吸尘器弯管连接头的结构特点,着重阐述了应用于本模具中的一种新颖的专用来解决大角度,长距离抽芯的连杆机构的工作原理。对模具设计过程中遇到的困难,如:小嵌件如何固定,很小的侧型芯如何固定于侧滑块上,及三个液压缸按顺序抽芯,圆弧型芯如何插入圆柱型芯2中等都作了详细的叙述与探讨。另外本论文还涉及到了主要成型零部件的加工问题。  相似文献   
7.
本文介绍了中外航空公司飞机发动机恒速传动装置几个故障典例及造成的危害,分析了填加滑油量不当对发动机恒速传动装置的影响,提出了预防措施。  相似文献   
8.
我国券商所遭遇的窘境是券商角色严重错位所致,过度膨胀的自营业务和理财业务导致券商资金“饥渴”。要摆脱所遭遇的窘境,应恢复券商从事产品创造和产品销售的本来面目,弱化资金博弈模型的买方业务,从资本和风险的角度综合安排融资结构和数量。正确处理做大与做强的关系,证券业的兼并重组如果不能体现优势互补、取长补短,并进行有效的资源整合和团队文化的融合,形成1+1〉2的效应,将难以达到预期效果。所以,不但要关注数量和规模指标,更要关注质量和效率指标;不仅要注重短期的盈利能力,更要注重风险防范和风险控制能力。制定符合企业自身资源优势的个性化竞争战略规划,通过业务创新改善盈利模式并构筑其核心竞争力,这才是券商摆脱目前困境的关键所在。  相似文献   
9.
水泵内部流动实质上是复杂的三维非稳定流动 ,它对水泵性能及结构振动有重要影响。本文介绍了一种求解这种复杂内流动的数值方法。三维雷诺数平均的纳维斯托克斯方程 ( 3-DReynolds-averaged Navier-Stokes,RANS)以及标准 k-ε的方程用于描述水泵内非定常紊流流场。系统特性方程与水泵的 CFD模型相结合以考虑流体在管道中的加速 ;采用任意滑移网格界面模拟叶轮和静止部件之间的相互干涉 ;将整个叶轮作为分析对象 ,以考虑失速情况下流动的周向非对称。这些技术的结合包括了水泵内非稳定流动的物理实质。一台实验数据比较齐全的离心式 -扩压器水泵被用于验证所提出的数值方法  相似文献   
10.
提出了两种新型的单级式隔离 DC/AC逆变电源的结构拓扑——半桥式单级逆变电路拓扑和推挽式单级逆变拓扑 ,分析了它们的工作原理及特点。电路拓扑结构简洁 ,可靠性高。仿真和实验样机测试结果证明 ,该电路拓扑在不同性质负载下能够可靠工作 ,电气性能优 ,效率较高 ,适用于小功率高压和低压直流输入电源。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号